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Abstract

A cardiac digital twin is a virtual tool representing a
patient’s heart that can simulate new events, such as
evaluating therapies to inform clinical decision-making.

We present a sex-specific digital twinning framework
for personalising electrophysiological function based on
routinely acquired magnetic resonance imaging data and
the standard 12-lead electrocardiogram (ECG), while
preserving known sex-related differences at the ionic level
in the resulting digital twins.

We demonstrate our digital twinning framework in
three subjects, two female and one male, where our
inferred reaction-Eikonal models reproduced the patient’s
ECG with a Pearson’s correlation coefficient of 0.9 on
average. The framework can be downloaded from GitHub.

1. Introduction

Cardiac electrophysiology exhibits sex-dependent
differences in the balance and distribution of ionic
currents. Myocardial action potentials in adult females
tend to be longer [1], partly due to a reduced repolarisation
reserve compared to males, and comparatively enhanced
calcium cycling. Female excitation-contraction coupling
also differs from males, with a lower amplitude and longer
calcium transient duration. These differences manifest in
the clinical ECG, and are important when considering
therapeutic strategies

A cardiac digital twin is a tool that coherently integrates
patient data to produce virtual hearts to help realise the
vision of precision medicine in cardiology [2]. Cardiac
digital twins should be consistent with the patient’s sex to
guarantee their relevance in diagnostic and therapeutic
decision-making.

We present a sex-specific extension to our digital
twinning framework for personalising electrophysiological
function based on routinely acquired magnetic resonance
imaging (MRI) data and the standard 12-lead
electrocardiogram (ECG), while preserving known sex-
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related differences at the ionic level in the resulting digital
twins.

2. Methods
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Figure 1. Cardiac digital twinning framework [2]
showcasing example visualisations of the activation (e.g.,
Purkinje properties inferred from the QRS signals) and
repolarisation (e.g., action potential duration gradients
from the T waves) parameter spaces.
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We generate the MRI-based biventricular geometry.
Then, we use a sequential Monte Carlo approximate
Bayesian computation algorithm to infer the heart’s
electrical activation and repolarisation properties from the
QRS, and from the T wave, respectively. We estimate the
tissue conduction speeds [3], Purkinje structure [4], and
repolarisation gradients [2] simultaneously and carry
uncertainties to the final inferred population.

2.1. Clinical data

This study used clinical MRI and 12-lead ECG data
from three healthy subjects (Table 1) as in [2]. The subject
cohort included participants of different ages, sexes, body
shapes, heart sizes, and resting heart rates to showcase the
robustness of our pipeline. Ventricular meshes were
generated from the MRI data at ~1.5 mm edge length.
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Table 1. Subject cohort [2]. Age (years); Sex: Female (F),
Male (M); Body mass index (BMI); Heart rate (HR) (bpm).

Subject ID  Age Sex BMI HR
Subject 1 56 F 2096 66
Subject 2 76 F 33.56 48
Subject 3 23 M 23.84 74

2.2.  Sex differences

Table 2. Female ionic scaling of parameters in an
endocardial  electrophysiological ~myocyte  model
compared to the parameters in the male model.

lonic Female
parameter Scaling
Gpca 1.6

Gyr 0.79
Gks 0.83
Gy1 0.86
Grnaca 1.15
CMDN,, 4 1.21

We use a dictionary of action potential models
generated using  sex-specific  electrophysiology
characteristics implemented on the ToR-ORd cellular
model [5] by calibrating the ionic conductances using
relative mRNA expression ratios of ion channel markers
from non-diseased adult human male and female
ventricular myocytes [5]. We propose the scaling factors to
produce a female version of the ToR-ORd model, based on
differences to a calibrated male endocardial baseline
(Table 2) (further details on the male baseline calibration
can be found in [5]). These sex-specific models paced at
the recorded heart rates (Table 1) were used to generate the
action potential duration-based dictionaries by varying the
models’ slow delayed rectifier potassium current (ls) [2].

These new sex-specific models, combined with the
MRI-derived geometries for the heart and torso, enabled
personalising to the sex of the subjects.

2.3. Parameter inference

The inference framework implements the sequential
Monte Carlo approximate Bayesian computation algorithm
in combination with a graph-based Eikonal model and the
pseudo-ECG formulation to calculate the 12-lead ECG [3].

The inferred parameter space includes discrete root
nodes derived from rule-based Purkinje trees [4], as well
as continuous conduction speeds (sheet-fibre, dense-
endocardial, and sparse-endocardial), and action potential
duration (APD) gradients and ranges [2].

We demonstrate the inference of all these parameters
simultaneously using subject-specific electrophysiology.

2.4.  Reproducibility

All digital twinning tools are available at
github.com/juliacamps/Cardiac-Digital-Twin  alongside
examples and tutorials to run the pipeline. The adult male
and female electrophysiology models can be found at
github.com/MaxxHolmes/Sex_Specific_Human_Electro
mechanics. Moreover, we will add the action potential
dictionaries used for this work to the digital twins GitHub
repository (github.com/juliacamps/Cardiac-Digital-Twin).

The inference iterative process took ~ 36 hours for each
subject on a desktop computer.

3. Results

We applied our framework to data from three subjects.
The inferred population of parameter-sets that matched the
clinical ECGs with a Pearson’s correlation coefficient
(PCC) of 0.9 on average (Table 3).

Table 3. Pearson correlation coefficient (PCC) between the
simulated and clinical ECGs after the inference.

Subject ID  PCC

Subject 1 0.88 +0.008
Subject 2 0.92 + 0.004
Subject 3 0.89 + 0.008

The framework was able to estimate the values of all
continuous (i.e., tissue conduction speeds and action
potential duration gradients) and discrete (root nodes)
parameters simultaneously for all three subjects, reaching
the desired error value for them after 11, 35, and 25
iterations for Subjects 1, 2, and 3, respectively (Table 3).

The inference process extensively explored the
parameter space (Figures 2 and 3) to find the parameter sets
that reproduced the clinical data (Figure 2). The root nodes
converged to the free-wall mid and basal regions for both
ventricles for Subject 2 (Figure 3.A); thus, moving away
from apical and septal regions. On the other hand, the root
nodes remained scattered throughout the LV at the end of
the inference process for the male subject (Subject 3 —
Figure 3.B).

The inference for the eldest female subject (i.e., Subject
2) yielded the best (PCC) match to the clinical data (Table
3); however, the inferred parameter-set population
presented considerable variability for various parameters
(Figure 2.C) as well as for the characteristics of their
simulated ECGs (Figure 2A and B). This variability in the
simulations suggests that there would still be margin for
improving the match to the clinical data, given additional
computational power and/or time.

Page 2



A 0 S 5 I
Clinical ECG Inference iterations Digital twin
| Il V1 V2
15 15 15 15
10 1.0 10 10
0.5 0.5 0.5 0.3
0.0 — 0.0 - 0.0 0.0 T
-0.5 -0.5 =05 -0.5
-1.0 -1.0 -1.0 -1.0
=15 -15 =15 =15
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
V3 V4 V5 V6
15 15 15
10 10 1.0
0.5 0.5 0.5
0.0 S 0.0 S 0.0 —
P
-0.5 =05 -0.5
-10 -10 -1.0
-8 0 100 200 300 400 500 600 700 15 0 100 200 300 400 500 600 700 -8 0 100 200 300 400 500 600 700 -8 0 100 200 300 400 500 600 700
Time (ms)
B QRS (ms) QTc (ms) Tpe (ms) T amplitude T peak disp. (ms)
160 ue 300
*Best discrepancy | 400

130

0.4

0.2

200

100

o

-100

0.2
-200 [
;!'m...—--‘
-0.4 _300
4] 5 10 15 20 25 30 35 o 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Inference iterations
C sheet endog endo, Gab 9pa 9t Jetm
(cm/ms) (cm/ms) (cm/ms)
0.060 — 1.00 - 100 i ] 100 c—
= S— —— S— —
0.055 - riCREE 075{ =TT 075
0050 | 050 | “mtmm= | 0,50 { “mmnn| 0,50 —
— | o2 ———— S— e
0.045 — - —— —— Swm———
. 0.00 | Semmm—| 0,00 { —] 000 | —
0.040 o — v — S—
- -0.25 | 0251 " | 025 E———
0.035 . — —— e
- =0.50 m— —(. 50 - =0.50
. — —— —
0.030 - -0.75 — YT | -0.75 = "
0.025 B -1.00 i | —1 .00 — -1.00 :-
0 0 0 20 0 20 0 20 0 20

Figure 2. Inference (Subject 2) iterations effectively explore the biomarker space when considering an action potential
model calibrated for female electrophysiology. A) ECG simulation evolution throughout the inference process. B)
Simulated QRS width, QTc interval, T-peak to T-end interval (Tpe), average T wave amplitude, dispersion of T peak timing
between V3 and V5 evolution (greyscale), clinical values (lime horizontal line), value for the parameter-set with the lowest
discrepancy (red star). C) Evolution of the parameter space, where sheet, endo; and endog are the conduction speeds in
the sheet-fibre direction, dense endocardial and sparse endocardial regions. AP D, (maximum action potential duration),
APD,y,;, (Minimum action potential duration), g,, (APD gradient in the apex-to-base direction), g,, (APD gradient in the
posterior-to-anterior direction), g., (APD gradient in the transventricular direction) and g, (APD gradient in the

transmural direction).
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Figure 3. Inference iterations explore the root node
parameter space (shown over AHA segments as in [4]) for
female (A — Subject 2) and male (B — Subject 3) subjects.

4. Discussion

We extend our previous open-source cardiac digital
twin generation framework [2] to incorporate sex-specific
calibration of the electrophysiology modelling.

We had previously shown the capacity of the inference
to match clinical QRS [4] and T wave [2] signals using
electrophysiology models based on male data. The
inclusion of the female-specific electrophysiology models
in the inference increases the relevance of this technology
towards in silico trials.

All inference runs were terminated by reaching the
desired discrepancy thresholds, suggesting that they could
have been run for longer to reduce further the mismatch
between clinical and simulated data (Table 3).

Our inference framework produces a population of
parameter-sets representing each digital twin (Figures 2
and 3) to propagate the uncertainty into the applications
where the digital twins get deployed. This aspect is crucial
for their adoption in either in silico trials or clinical
environments, as it allows extracting confidence in the

predicted parameter values, as well as considering the full
range of alternative possibilities that yield a similar match
to the clinical data.

Given our results, we anticipate that our framework will
successfully generalise to new male and female cases in the
human population.

Recent works show the potential of novel cross-sex
translators, enabling estimation of therapeutic response on
the ECG using a calibrated sex-specific model [6].
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